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Problem 1 (14 points)
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Figure 1: Resistor network.

Consider the circuit in Figure 1 and the related parameters: R1 = 2kΩ, R2 = 4kΩ, R3 = 2kΩ,
R4 = 2kΩ, V = 12V , I = 3mA.

(a) (2 points) Clearly state the Thévenin theorem.

(b) (4 points) Determine the equivalent resistance Req seen by R1 (consider R1 an open circuit and
calculate the resistance between the two nodes originally connected to R1).

(c) (4 points) Determine the Thévenin equivalent voltage Voc of the open circuit seen by R1.

(d) (4 points) Compute IR1 and IR2 .
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Problem 1 - Solution

Point a

Thévenin Theorem: Any linear electric network can be replaced by an equivalent circuit containing
a single independent voltage source Vth and series resistance Rth. The theorem is applied to the
network after removing the load between tow arbitrary terminals A and B. The equivalent voltage Vth

is the voltage obtained at the terminals A-B. The equivalent resistor Rth is the resistance between the
terminals A-B calculated after replacing all voltage sources with a short circuit and all current sources
with an open circuit (e.g. replace each source with its ideal internal resistance).

Point b

We use the Thévenin theorem to find the equivalent circuit connected to R1 (Fig. 2). We remove R1

and compute the equivalent resistance at its nodes (Fig. 3) To do that we need to not consider the
active elements, the generators. They have to be replaced by their ideal internal resistance, as shown
in Fig. 3. Therefore, the equivalent resistor can be calculated as follows:

Req = R2 +R3//R4 = R2 +
R3R4

R3 +R4
= 4kΩ+

2 · 2
2 + 2

kΩ

So Req = 5kΩ.
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Figure 2: Thevenin Equivalent R1: Step 1.
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Figure 3: Thevenin Equivalent R1: Step 2.
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Remarks

This question is comparable to top problem 2.2. The number and type of sources is identical (1 voltage
source and 1 current source), 3 resistors instead of 5 need to be considered here (lower complexity than
the top problem).

Point c

The equivalent generator can be calculated using the superposition principle.
First the current generator is kept while the voltage generator is removed (shorted) (see Fig. 4).

The partial equivalent voltage is then

V ′
AB = 3mA · 5kΩ = 15V

where 5kΩ is the equivalent resistance of R2,3,4 as calculated in b).
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Figure 4: Thevenin Equivalent R1: Step 3.

Then the voltage generator is kept while the current generator is removed and substituted by an
open circuit (Fig. 5). We first notice that the resistor R2 cannot pass any current, since one of its
nodes is then floating. The partial equivalent voltage is then obtained by applying the voltage divider
equation (as in Fig. 5) composed of R4 and R3 only:

V ′′
AB = 12V

2kΩ

2kΩ+ 2kΩ
= 6V

We sum the two effects:

Veq = V ′
AB + V ′′

AB = 15V + 6V = 21V

Remarks

This question is comparable to top problem 2.2. The number and type of sources is identical (1 voltage
source and 1 current source), 3 resistors instead of 5 need to be considered here (lower complexity than
the top problem).

Point d

Replacing the circuit with its Thévenin equivalent (see Fig. 6), we get

IR1 =
Veq

Req +R1
=

21V

7kΩ
= 3mA

We can apply KCL to the node common to the current generator, R1 and R2 (see Fig. 1), labeled
as node C in Fig. 7:

I = IR1 + IR2 → IR2 = I − IR1 = 3mA− 3mA = 0mA
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Figure 5: Thevenin Equivalent R1: Step 4.
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Figure 6: Thevenin Equivalent R1: Step 5.

C R23mA
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Figure 7: Current calculation R2.

Remarks

The first question can be solved with mesh analysis if b and c are not solved. The complexity is much
lower than top problem 1.1 (1 voltage supply, 11 resistors). The second question is very simple and
only requires to apply KCL to one node.
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Problem 2 (21 points)
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Figure 8: Circuit with OPAMP.

Consider the circuit in Figure 8. It operates in a sinusoidal regime with an ideal opamp and
ideal components.
Parameters: R1 = 1kΩ, R2 = 2kΩ, C = 0.5µF , ω0 = 1000 rad/s.

(a) (5 points) Using the superposition principle, derive the relation H1(jω) between v0 and v1

H1(jω) :=
v0
v1

=
1

R1

1

jωC

(b) (5 points) . . .H2(jω) between V0 and I2

H2(jω) :=
v0
i2

= −R2

R1

1

jωC

(c) (8 points) Assuming v1(t) = 0V, i2(t) = cos(ω0t) mA, determine |v0(t)|.

(d) (3 points) Assuming v1(t) = 2 cos(ω0t) V, I2(t) = sin(ω0t) mA, determine |v0(t)| in its simplest
form.
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Problem 2 - Solution

Point a

For obtaining the first transfer function, we replace generator 2 with its ideal equivalent resistance
(open circuit, see Fig. 9). Taking the negative terminal of V1 to be the reference voltage (0 V ), the
positive terminal of the opamp will be 0 V . Thus the negative terminal will be 0 V also (virtual node).
The current through the leftmost R1 thus equals V1

R1
. Since there is no current into the terminals of

the opamp (ideal), all this current goes to the capacitor. We then obtain

V0 =
V1

R1
∗ 1

jωC

.
From this we get

H1(jω) =
1

R1jωC
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Figure 9: OPAMP network.

Remarks

Reasoning about the circuit with only the voltage source makes this question comparable to question
1 of the tutorial assignment for week 4 (see Nestor page), except that the resistor and capacitor are
in series here instead of parallel. The math steps required are minimal, but a good understanding of
basic principles (e.g. virtual node) is required. The final solution is provided in the hope to guide the
reasoning of the students.

Point b

For the second function, we replace generator 1 with its equivalent resistance (wire, see Fig. 10). The
voltage across the bottom-most R2 is I2R2 (and so the + terminal of the opamp). Thus the negative
terminal will be V = I2R2 also. The current through the leftmost R1 is then I2R2

R1
. Since there is no

current into terminals of the opamp (ideal), all this current goes to capacitor.
We obtain

V0 = IZcap =
(
− R2I2

R1

) 1

jωC

negative sign due to the direction of the current.
From which

H2(jω) = −R2

R1

1

jωC
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Figure 10: OPAMP network.

Remarks

The complexity of this question is also comparable to question 1 of the tutorial assignment for week
4 (see Nestor page). Knowledge about Ohm law as well as basic principles of opamp operation are
clearly also required. The math steps required are minimal. The final solution is provided in the hope
to guide the reasoning of the students.

Point c

We have V0 = H1V1 +H2I2 = H2I2 from superposition. Have

H2 = −2

1
∗ 1

j ∗ 103 ∗ 0.5 ∗ 10−6
= +4000jV A−1

So

V0(t) = H2 · i2 = 4000j · 10−3ejωtV = 4 · ej π
2 · ejωtV = 4 · ej(ωt+π

2 )V

and taking the real part because complex voltages don’t actually exist.

V0(t) = 4 cos(103t+
π

2
) = −4 sin(103t)V

Remarks

The fact that the final solution for points a and b is provided guarantees that this point can be solved
by simply applying the superposition principle. The rest is simple math.

Point d

Same method as c), but now need H1.
Substitute:

H1 =
1

j103 · 103 · 0.5 · 10−6
= −2j

The contribution to V0 from V1 is thus

∆V0(t)from 1 = −2j · 2ejωtV = 4 · ej(ωt−π
2 )V

Since the i2 is the same as in part c) but a sine rather than a cosine, we can just shift its contribution
backwards by π

2 (or recalculate it):

∆V0(t)from 2 = 4ejωtV

Adding the two contributions, we get
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V0(t) = 4 · ej(ωt−π
2 ) + 4ejωtV = 4ejωt

(
1 + e−j π

2

)
= 4ejωt

(
1− j

)
= 4ejωt

(√
2e−

π
4

)
Taking reals, the real voltage across C is then

V0(t) = 4
√
2 cos(103t− π

4
)V

The final answer is then

|V0(t)| = 4
√
(2)| cos(103t− π

4
)|V

Remarks

The fact that the final solution for points a and b is provided guarantees that this point can be solved
by simply applying the superposition principle. The rest is simple math.
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Problem 3 (21 points)
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Figure 11: RLC circuit.

Consider the circuit in Figure 11. Assume sinusoidal regime, ideal components and the following
parameters: C = 0.25mF , R = 8Ω, L = 0.5mH, ω0 = 2000 rad/s.

(a) (5 points)Without using any calculation, but only reasoning about the behavior of each element
in the circuit, describe the behavior of

H(jω) :=
iR
vin

for low (ω → 0) and high (ω → ∞) frequencies.

(b) (16 points) Determine vL(t) considering vin(t) = −
√
2sin(ω0t) V and reduce it to a similar form

as given for vin(t) but using the cosine instead of the sine.
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Problem 3 - Solution

Point a

For low frequencies (ω → 0 rad/s) the capacitor impedance ZC → ∞, while the inductor impedance
ZL → 0. Thus the equivalent impedance of the parallel resistor and inductor → 0, and so H(jω) → 0.

For high frequencies (ω → ∞ rad/s) the capacitor impedance ZC → 0, while the inductor impedance
ZL → ∞. Thus the capacitor may be replaced by a closed circuit, and the impedance contribution from
the parallel inductor may be ignored. Thus the circuit resembles just a resistor, and so H(jω) → 1

R .

Point b

First we calculate the impedances of all the elements:

• ZC = 1
jωC = −j 1

2000∗0.25∗10−3 = −2jΩ

• ZL = jωL = j ∗ 2000 ∗ 0.5 ∗ 10−3 = jΩ

• ZR = R = 8Ω

We then need to calculate the impedance of the parallel components

ZR||ZL =
ZLZR

ZL + ZR
=

8j

j + 8
Ω

We then apply the voltage divider formula

VL = Vin · ZL||ZR

ZL||ZR + ZC
= Vin ·

8j
j+8

8j
j+8 − 2j

= Vin ·
[
− 16

17
+

4

17
j
]

We have Vin(t) = −
√
2 sin(ω0t) so Ṽin(t) =

√
2ejω0t+j π

2

Thus,

VL =
√
2ejω0t+j π

2 ·
[
− 16

17
+

4

17
j
]

What remains is to calculate the phase and magnitude of VL:

ϕ(VL) =
π

2
+ arctan(

4/17

−16/17
) =

π

2
− 0.244979... = 1.32582...rad

|VL| =
√
2 · | − 16

17
+

4

17
j| =

√
2 ·

√
(
16

17
)2 + (

4

17
)2 =

4
√
34

17
V

Taking reals, the final real voltage is then

VL(t) =
4
√
34

17
cos(ω0t+ 1.326rad)V =

4
√
34

17
cos(ω0t+ 75.96◦)V

where VL is given as a cosine as required.

Remarks

The complexity of this problem is comparable to top problem 4 (see tutorial assignment for week 3 on
Nestor).
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Problem 4 (14 Points)

Legend:
A ·B = AND

A+B = OR

A = NOT A

a) Logic minimisation with Karnaugh maps (4 points)

y = (D·C·A·B)+(D·C·A·B)+(D·C·A·B)+(D·C·A·B)+(D·C·A·B)+(D·C·A·B)+(D·C·A·B)+(D·C·A·B)

Fill out the Karnaugh map to represent the expression above and use it to optimise the logic
needed to implement the given expression. Please extract the reduced logic formula out of the Kar-
naugh map and do not use algebraic simplifications.

b) Logic mapping with Boolean algebra (4 points)

y = (A ·B) + (C ·B) + (D · C ·B) + (D · C ·A)
You can only use 2 input NOR gates and inverters (NOT gates) to implement the provided Boolean

expression. Use Boolean algebra to change the formula accordingly and draw the resulting combina-
tional logic with NOR and INV symbols.

c) Circuit function completion (6 points)

You are given the combinational logic shown in Figure 12. Add only one inverter (NOT gate) and only
one 2 input gate of your choice from AND, NAND, OR, NOR, INV to the provided logic to implement
a 2 input XOR function. Draw the 2 gates on to Figure 12.

NAND

NOR

AND

A A B B

Figure 12: 3 logic gates.
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Problem 4 - Solution

Point a

The Karnaugh map is drawn with gray code, so only one digit changes per step, with 2 variables
vertical and 2 horizontal. Each of the given terms eg.

(D · C ·A ·B)

appears as a one in the map, the rest of the positions are zero. Mark all groups of 2 (one variable
reduced), 4 (two variables reduced), 8 (3 variables reduced), 16 (all variables reduced) that you can
find, individual positions can be used in multiple groups. Groups can be formed over the edge.

BA

DC

00 01 11 10

00

01

11

10

1

1 1

1 1 11

1

0 00

00

0 00

DC

BA

00 01 11 10

00

01

11

10

1 1

1 1 11

1

1

0 0

0 0 0

0 0 0

AB

CD

00 01 11 10

00

01

11

10

1

1

1

1

1 1 1

1

0 0 0

0 0 0

0 0

CD

AB

00 01 11 10

00

01

11

10 1 1 11

1

1

1

10 0

0 0 0

0 0 0

y = (green) + (yellow) + (red)

y = (A ·B) + (C ·B) + (D · C)

A ·B = AND

A+B = OR

A = NOT A

Remarks

The Karnaugh map for this question is comparable to the one provided in the solution of exercise
24.16 of the book (provided in week 6 on Nestor). The Karnaugh maps needed for exercises 24.23 and
24.24 (part of the tutorial assignments of week 6, see Nestor and related solutions) are somewhat more
complex than this one.
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Point b

Variant 1

The De Morgan’s laws can be used to turn all gates into 2 input NOR gates, after a first step for logic
simplification.

y = (A ·B) + (C ·B) + (D · C ·B) + (D · C ·A)

simplifies to:
y = ((A+ C) ·B) + (D · C · (B +A))

First change the formula to only have 2-input gates

y = ((A+ C) ·B) + ((D · C) · (B +A)

Introduce double inversion to every inner 2 input AND expressions:

y = ((A+ C) ·B) + ((D · C) · (B +A)

Swap gates from 2 input AND gates to 2 input NOR gates by inverting the inputs:

y = ((A+ C) +B) + ((D + C) + (B +A)

Remove obsolete double inversion on single variables:

y = ((A+ C) +B) + ((D + C) + (B +A)

Add double inversion to the outer 2 input OR gate:

y = ((A+ C) +B) + ((D + C) + (B +A)

Draw the circuit.

A

B

C

D

Figure 13: The 2 input NOR and INV gates circuit variant1.

Variant 2

Using De Morgan’s laws turn all gates into 2 input NOR gates without logic simplification.

y = (A ·B) + (C ·B) + (D · C ·B) + (D · C ·A)

First change the formula to only have 2-input gates:

y = (A ·B) + (C ·B) + (D · (C ·B)) + (D · (C ·A))
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Apply double inversion to every inner pair:

y = ((A ·B) + (C ·B)) + ((D · (C ·B)) + (D · (C ·A)))

Swap expressions from 2 input AND to 2 input NOR by inverting the inputs:

y = ((A+B) + (C +B)) + ((D + (C +B)) + (D + (C +A)))

Remove obsolete double inversion on single variables:

y = ((A+B) + (C +B)) + ((D + (C +B)) + (D + (C +A)))

Add double inversion to the outer 2 input OR gates:

y = ((A+B) + (C +B)) + ((D + (C +B)) + (D + (C +A)))

Draw the circuit.

A

B

C

D

Figure 14: The 2 input NOR and INV gates circuit variant2.

Remarks

The use of the Morgan’s laws for the translation of arbitrary logic functions to NAND and NOR logic
was extensively covered in the lecture (both in graphical and algebraic form). Exercises 24.12 (part
of the tutorial assignments of week 6) and 24.13 (solution provided in week 6) provide the basis for
applying the De Morgan’s laws to Boolean expressions.

Point c

Analyse your given 2 input NAND, AND and NOR gates,

NAND2: A ·B
AND2: A ·B
NOR2: A+B
and what you are after (a 2 input XOR expression): (A ·B) + (B ·A)
The first obvious observation is that the AND2 gate is not useful and can be ignored.

Variant 1

Pairing the NAND2 with an inverter provides (A ·B), which is half of the XOR expression. The NOR2
provides the other half (B · A), using input inversion (already available in the circuit diagram). An
additional 2 input OR gate is used to implement the OR of these two terms.
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choose an OR2 to connect them and you are done.

A A B B A ·B A ·B A+B B ·A A ·B +B ·A
0 1 0 1 1 0 0 0 0
0 1 1 0 0 1 0 0 1
1 0 0 1 1 0 1 1 1
1 0 1 0 1 0 0 0 0

Variant 2

See that the NAND2 is only zero for the first term of your XOR2: (A ·B). Adding an inversion to the
NOR2 gives you zero only for the second term (B ·A). If you connect both of them to an AND2 you
get an XNOR2 function, but if you use an NAND2 you have a XOR2.

A A B B A ·B A+B A+B A ·B ·A+B

0 1 0 1 1 0 1 0
0 1 1 0 0 0 1 1
1 0 0 1 1 1 0 1
1 0 1 0 1 0 1 0

A /A B /B

NAND2
INV

OR2

NOR2

A /A B /B

NAND2

NOR2

INV

NAND2

Figure 15: The XOR2 circuit.

Remarks

The skill set needed to approach exercise 24.19 is the same required to solve this question.
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